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SOME ASPECTS OF PROBLEMS IN MAGNETOHYDRODYNAMIC INSTABILITY
THEORY WHICH CAN BE REDUCED TO A DIFFERENTIAL EQUATION WITH
AN ARBITRARY PARAMETER ASSOCIATED WITH THE LEADING DERIVATIVE
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The asymptotic properties of the solutions of a fourth-order differen-
tial equation with an arbitrary parameter associated with the leading
derivative are investigated, It is shown that the similarity of the as-
ymptotic forms is independent of the value of the parameter associated
with the leading derivative when the coefficient of the second deriva-
tive has zeros.

The influence of longitudinal current, a finite ion Larmor radius and
ion-ion viscosity on the stability of a plasma in a magnetic field are
considered, and the stabilizing effect of ion rotation in the magnetic
field is also determined.

1. It is well known that in the investigation of the
oscillation spectra in ordinary hydrodynamics and in
magnetohydrodynamics the problem reduces, in a
number of cases, to a differential equation of higher
than second order [1, 2]. In particular, the case when
the coefficient of the (n — 2) derivative in an n~-th or-
der differential equation vanishes at some point in
the complex X plane plays a special part. In this con-
nection an investigation of the differential equation

afe™ —Bu, (2)o"" + uy (g =0 a.1)

was undertaken in [3, 4] with fwo small parameters:
B the "quasi-classical™ small parameter characteriz-
ing a weakly irregular medium, o another small pa-
rameter (associated, for example, with the influence
of weak viscosity); we note that o and g may, in par-
ticular, be equal to unity. The coefficients u,, uy ~ 1,
except at those points where they become zero.

in [3, 4]particular attention was paid to the influence of "inter=-
section” points in the solutions on the nature of the oscillation spectra,
In particular, close to the point up = 0, there are two "intersection”
points of the solutions, and the distance between them, proportional to

the parameter o/ BZ, determines the dimension of the singular region in

the case in question. The methods of solution have been classified ac-
cording to the parameter o/ 8, particular attention being paid to the
case /% > 1, when the method of phase integrals may be employed
in order to pass around each singularity separately, since the distance
between points where the solutions intersect is large compared with
the characteristic wavelength of the intersecting solutions,

In the present paper it will be shown that by using Laplace’s meth~
od in association with the analytic properties of the solutions it is pos-
sible, from a single viewpoint, to investigate the problem for any
values of the parameter «/B%, It was noted in [3] that in accordance
with the results of [5] we must expect an anomalous transition from
one solution to another in some region of the complex X plane close
to the point uy = 0, and also for (a/8%) < 1, As will be clear from
what follows, this is associated with the fact that the solutions possess,
in a known sense, identical asymptotic properties for arbitrary values
of /8%, For simplicity, we confine ourselves to fourth-order differ-
ential equations.

We shall consider the differential equation

oY N (29" + uye) =0 (1.2)

which was investigated in [6] for large values of the
parameter A. It was shown in [3] that (1.1) may be
reduced to a similar form close to the point u, = 0,
while A% = g%/u.

Using Laplace's method, we write the solution of
Eq. (1.2) as

¢ (z) = gt”g exp (tr—? i} 7»'3)(]5. (1.3)

Just as in [6], we choose the contour C as shown
in the figure. The ends of the contours, which go off
to infinity, lie in sectors of the t plane where Re tY
/Az) < 0, Then, in accordance with Cauchy's theorem,
we have the following relation between the solutions:

Ay F Ay F A=V, uy—u, =4, (1.4)
U, —ug =4,.

We shall determine the behavior of the solutions
indicated above on the real axig X for small values
of the parameter A. First of all, we shall consider
the solution V. On calculating the residue for t = 0,
we obtain
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The summation in expression (1.5) may be ne-
glected at sufficiently large values of x, when la| >» 1,
and the expression passes into the corresponding ex-

pression obtained in [6].

We shall now consider the solutions Ay. Making
the change of variable ; = Az'"o, we have

Ay =

r i/z SEBXP[M% (o4 5) - dlf;/l . .6
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We see from (1.6) that in the case where A > 1,
the term w07 / Az of the exponential may be neglect-
ed, so that further calculations are quite similar to
those carried out in [6]. Similar arguments may be
brought forward as regards the solutions Ux. We now
give the asymptotic expression for A on the real axis

— —H/l
Ay = Y ak~e-Yin (%) ek, arg x = — T,

i — e
Ay == Y mA=heldn (%) [€ & i) -V,
arge =0, & =ik,

We note that the expressions given here coincide
with those obtained by the method of phase integrals.
In the sector arg z=n-+Ygyn, |7]< 1 the solution Ay be-
haves as the most rapidly descending solution and
does not contain "admixtures® of other solutions. In
the sector arg z = ?/3ym, within the limits of error of
the saddle point method, the solution V has no effect
on the behavior of Aj.

Finally, on the line x > 0 both types of solution
are purely oscillatory and have a "weak" difference
of orders, expressed in powers of x and A. One eas-
ily notes that close to the lines cy, satisfying the con-
dition arg z = */;n (k — 2), terms having the form of
solutions of type V attach themselves to the solutions
Ay (which are purely oscillatory on these lines). This
is associated with the disposition of the saddle points
and the lines of descent relative to the contours of the
solutions, which determines what possibilities we
have of deforming the contour in the sector of the
lines of descent. Close to the lines cy the saddle points
t;, £ = — Mz fall on the border of the unshaded re-
gions, and the contour C(Ay) is deformed into lines
passing through all the saddle points. We note that
for solutions of the type Uy, in view of their lesser
degree of growth, there exists a sector in the x plane
in which there is an admixture of increasing (or pure-
ly oscillatory) Ay, since it is impossible to eliminate
the influence of the saddle points ty, o by deforming
the contour. Since the asymptotic forms are simi-
lar for A < 1 and A > 1, in both the cases indicated
the rules for finding the frequency spectrum for finite
solutions are similar to those obtained in [3].

Of course, the boundary conditions on the walls
may lead to other rules for locating the frequencies
and, in particular, may violate the strong link between
the solutions.

We note that in the case under consideration both
k; — ky and k; + ky experience branching in the neigh-
borhood of the singular region u, = 0. Here ky{x), ko{x)
the wave vectors of the branching solutions are easily
determined from (1.1). In the case where only k; — ky,
for example, experiences branching, and the branch-
ing points are not situated on the real axis, the rela-
tion between the solutions becomes weaker [7].

2. Before passing to concrete applications of the
theory, we shall make some further observations.
Firstly, it follows from the foregoing discussion that
there is no necessity to investigate the size of the

"resonance™ region between the "intersection" points
of the solutions, since the oscillation spectrum of

“finite solutions does not depend on this when the point

u, = 0 is present. All that is required is that the width
of the "resonance" region should be small compared
with the width of the "hole™ in which the finite solufion
is localized; however the width of the "hole" is equal
to ~R.(R is the characteristic dimension of an inho-
mogeneity), and the dimension of the "resonance” re-
gion is ~RVa. Thus the latter requirement is in fact
always fulfilled. Moreover, since in concrete prob-
lems the coefficient u, is, generally speaking, a func-
tion of frequency, the disposition of the points uy = 0 in
the complex X plane plays an important part, If the
points u, = 0 are situated remote from the real axis
(this is usually the case if Re w ~ Im w), and finite
solutions of (1.1) exist on the real axis, correspond-
ing to a given frequency, then the points uy = 0 exert

a weak influence on such solutions. Putting it another
way, the theory considered here is, generally speak-
ing, applicable to the case

Imm<Rew.

We also note that singularities of the type of "inter-
section" of solutions or "reversal points" will exert
an influence on a disturbance in the form of a wave-
packet if S

d(Rew) 1 A
7 meld A—m>L .

Here L is the distance from the place where the
packet is localized to the region where the geometri-
cal-optics approximation is violated, Ay, is the am-
plitude of the initial ™oise" in the medium, A is the
amplitude of the disturbance in the nonlinear mode.
Otherwise it is not necessary to allow for nonlinear
effects, _

We shall now consider the effect of a finite ion
Larmor radius, and also of ion-ion viscosity on the
development of plasma instabilities in a magnetic field
as a result of the longitudinal current {8, 9]. The equa-
tion for the perturbed quantities has the following form
[9, 10}
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The following notation has been introduced in (2.1)
and (2.2): ky, k, the components of the wave vector
on the y and z axes, respectively; rj the ion Larmor
radius; H, the magnetic field directed along the z axis;
Toe, Tyi. WHe, wyi the electron and ion temperatures
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and Larmor frequencies, respectively; j, the initial
longitudinal current; oy the longitudinal conductivity;
Ve, Vi the collision frequencies of electrons with ions
and ions with ions, respectively; n, the unperturbed
density; e the electronic charge; ¢ the velocity of
light; » the electronic thermal conductivity, It is con-
venient to carry out qualitative investigations of sta-
bility with the help of the relation [10]

Im (u; + Puy | E|?) = 0,

Re (af?*) — Re (u; + Buks?) = 0, (2.3)

written for some point x(®) in the region of localiza-
tion of ¢(x) for (1.1). Instead of ky in (2.3) either ky
or k, is taken, depending on the summed contribution
of modes in the stability criterion &, / k, ~ }/q. First
of all, we shall determine how a finite ion Larmor ra-
dius influences the instability due to the longitudinal
current if the coefficient of the second derivative does
not vanish. In this case we need not take into account
the fourth derivative in Eq. (2.3). Considering for
simplicity the case when wy > wg, @, av;, yk.2, we ob-
tain from (2.3)

W13 = o 3 ¥/, Y 0 — o . (2.4)

We see from (2. 4) that it is possible to stabilize
the current instability due to the finite size of the ion
Larmor radius if

02 > 4wy, ,

Now if there is a point u, = 0 in the neighborhood
of the real axis, then the influence of ky "modes" will
be substantial. We then obtain the following stabiliza~
tion condition from (2.3)

wi® > dawyo,,

i.e., the stabilization condifion is notably improved.
We shall now calculate the effect of ion-ion viscos-
ity which corresponds to the term avj. Then on condi-
tion that w? > 4wowg (from which, in particular, there
follows the stabilization of the usual current instabil-
ity), and also that w; > av;, we have from (2.3), when

the fourth derivative may be neglected,

®,0

0™'s

0= — 1 Vi_T-
i @;

(2.5)

We see from (2. 5) that the simultaneous taking into
account of the longitudinal current, the rinite size of
the ion Larmor radius and the ion-ion viscosity leads
once again to an instability with a small increment
(Im 0 <€ Vo, ). When points uy = 0 are present it
follows trom (2. 3) that Re w and Im w are diminished
by a factor of a, but the instability remains.

We are grateful to G. M. Zaslavskii and R. Z.
Sagdeev for useful discussions,
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